Parents are the reason that students cannot hack the Math in Physics?

High school kids cannot use fractions.Another physics teacher told me that students cannot hack the math in physics,” says Stewart Brekke in his article entitled, “Urgent Math Crisis in our Nation: Basic Math Deficits Affect Student Performance in High School Physics and Chemistry“.  Is this an unusual observation for a Physics teacher?  Brekke estimates that the USA “may now have over 100,000 high-school students who do not know fractions and decimals well enough to do high-school physics and chemistry successfully, let alone go on to college and pass a physics or chemistry course.”

There is clearly a problem on our hands – many teens cannot do basic mathematics.  Where do we find the source of this problem?

Stewart Brekke speculates that part of the problem may be attributed to the elementary schools placing too much emphasis on reading skills and not nearly enough on basic arithmetic skills. Japanese elementary school students typically spend two to three times as much time on developing mathematical skills as their American counterparts. The result of this shift in priorities is evident.  Stewart also believes that the “lack of a proper foundation at home” is also a significant contributor to the poor arithmetic skills observed in high school students. Sadly, many children enter first grade without being able to count to ten, and their progress in arithmetic skill development is severely hampered.

It is not that parents do not care, for, on the whole, I have seen them show deep concern about their children’s education, but that many of these parents do not take the time to teach their children number facts nor reading skills. These parents must be informed early that their child’s success in school means that they must start educating their children before they enter kindergarten,” says Brekke.

Education systems all over the world invest vast sums of money into remediation of high school students struggling with poor basic skills. Yet high school Physics and Chemistry classes continue to shrink in size as teenagers avoid confronting the issues that stand in their way of understanding these subjects.  Are we trying to solve a problem instead of preventing it?  What would happen if more of the national or state education investment was used for programs aimed at educating the PARENTS of pre-school children, thus effectively equipping them to help their children develop the basic skills needed for future success at school? 

 Can parents make a difference at home?  All indications are that if parents do not participate in the education process BEFORE their child enters the school system, they may in fact be contributing to their child’s future scholastic failure.

Share

Is kindergarten too young to study Physics?

Studying Physics in a kindergarten classMany parents of young children have vague (and sometimes not so pleasant) memories of studying Physics during their high school years.  These same parents with their somewhat patchy memories of what matter and energy are, and how these “Physics things” interact, would be astounded to learn that their kindergarten-age children are in fact ready to study Physics.  But isn’t Physics terribly complex with lots of formulae, obscure calculations, and plenty of abstract concepts to glue it all together?  How can a kindergarten-age child possibly study Physics?

 [1]Marxen in her article “Push, Pull, Toss, Tilt, Swing: Physics for Young Children”, explores the role of Physics in the learning process and problem-solving skill development of young children.  Marxen comments that there are “similarities between how children think and learn and how scientists work. Children, like scientists, are theory builders. When children are allowed to construct knowledge by acting on their environment, they expand their understanding, which in turn contributes to their intellectual development.”  So your children are little rocket scientists in disguise, how exactly are they learning and building these theories?

Marxen explains that young children’s Physics experiences usually involve the movement of objects.  For most parents and teachers, “movement of objects” is synonymous with play.  The action is primary and the observation is secondary. Children typically make discoveries about matter and energy through creative play and simple discovery activities in the classroom and at home. For example, something as simple and inexpensive as some small balls and a few sheets of cardboard (that can be folded into ramp-like structures of varying steepness) can invite children to explore concepts that will only be translated into detailed formulae and complex concepts many years down the road for them.  Playing and learning to ask the question “why does that happen” gives these children the opportunity to acquire valuable learning experience.  This experience can be built upon to create a practical knowledge base which will later provide a sturdy foundation to which more complex, abstract Physics knowledge can easily be added.

Are kindergarten children too young to study Physics?  Absolutely not!  Teachers and parents alike can introduce young children to Physics discovery and learning with play-based activities without fear that the children may be overwhelmed or turned off Physics.  Plan playtime or classroom activities that focus on getting the children to experiment and make observations about the world they live in, and you will be well on your way to stimulating a life-long interest in, and appreciation for Physics.

[1]        Carol E. Marxen; Childhood Education, Vol. 71, 1995.

Share

Teaching Creative Problem-Solving to Children

Bob Eberle and Bob Stanish agree that creative problem-solving is a basic skill and a good sense approach to modern day living and learning. As a practical style of learning, creative problem-solving has significant transfer value.

CPS: Creative Problem-solvings for Kids In their book, “CPS for Kids: A Resource Book for Teaching Creative Problem-Solving to Children”, Eberle and Stanish share their 6-step approach to creative problem-solving. They show how to start with becoming more alert and developing an awareness which stimulates recognition of situations or conditions that need improvement or correction. From this starting point of becoming more observant, the reader is led to the point of generating creative ideas with potential solutions to the problems at hand. But the process doesn’t end with an idea. No, it takes the reader all the way through to a final step that is often omitted when problem-solving techniques are taught. Solution-finding is only part of the end product. Implementing a workable solution is the rest of the end product, and the final step in Eberle’s and Stanish’s process. The reader is taken all the way from waking up to the call for solutions, to developing the final plan to implement their best solution.

While this book emphasizes application in the elementary school environment, its value in teaching at all levels should not be under-estimated. Students need to be challenged to think, and this book helps teachers, parents, and students alike to seek out those challenges and to embrace them enthusiastically.

Share